Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation.
نویسندگان
چکیده
Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions.
منابع مشابه
Sweet bays of ERAD.
Proteins that improperly mature in the endoplasmic reticulum (ER) are dislocated to the cytoplasm for proteasome-mediated destruction. A recent study provides insight into the incompletely understood processes for selection and targeting of aberrant proteins for ER-associated protein degradation. The identification of the ER chaperones GRP94 and BiP as binding partners for the mannose-binding p...
متن کاملEffects of Oxidative Stress on the Solubility of HRD1, a Ubiquitin Ligase Implicated in Alzheimer’s Disease
The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 lev...
متن کاملUbiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder
BACKGROUND Although the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understoo...
متن کاملA different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes.
Human HRD1 and SEL1 are components of endoplasmic reticulum-associated degradation (ERAD), which is a retrograde transport mechanism from the ER to the cytosol for removing unfolded proteins. The expression of HRD1 and SEL1 was induced by ER stress-inducing agents and overexpression of both ER stress-responsive transcription factors, ATF6 and XBP1. Inhibition of IRE1 and ATF6 revealed that ER s...
متن کاملNeuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
 
دوره 291 18 شماره
صفحات -
تاریخ انتشار 2016